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The performance of airport surface operations has usually been assessed with respect to 

delay, capacity and efficiency. Although predictability as a performance measure is 

recognized by stakeholders as an important goal, predictability metrics have not been 

defined for airport surface operations. This paper aims to fill that gap by using data from 

NASA’s Spot and Runway Departure Advisor (SARDA) human-in-the-loop simulations in 

2012 to study airport operations predictability. Using the simulation data, we measure and 

compare predictability on the airfield with and without SARDA from three perspectives: 

controllers’ perspective, flight operator’s perspective and traffic management perspective. 

The controller survey results indicate the perception that SARDA reduces controller’s 

workload surges and has the potential to better handle off-nominal situations. By studying 

taxi-out time in both baseline and advisory runs, it is found that SARDA reduces variability 

in total taxi-out time and eliminates uncertainty in taxi-out time sooner into the taxi-out 

process. Moreover, SARDA enables more accurate predictions of wheels-off time through 

use of a linear regression model. There is no evidence indicating that SARDA causes more 

deviation from First-Scheduled-First-Served as compared to the non-SARDA case. Instead, 

SARDA improves First-In-First-Out performance in the queue area. 

I. Introduction 

ay-of-operation predictability allows a multitude of benefits in airport surface operations. As an example, if 

pilots know the departure clearance time in advance with certainty, they can use a single engine while taxiing 

until the time when they should start the second engine for takeoff. With less predictability about departure 

clearance time, they must start the second engine earlier than necessary to make sure they are not caught short when 

cleared for departure, which consumes more fuel. In a trajectory-based air traffic management system, investigation 

of predictability on the surface is not just beneficial to the airport operations but could also improve performance in 

the downstream. However, in the context of airport surface operation management, performance assessment has 

mainly been conducted with respect to delay
 1-4

, capacity
5-8

 and efficiency
3, 9, 10

. Little work has been done to 

measure predictability, even though various stakeholders recognize the importance of predictability
 11, 12

. 

National Aeronautics and Space Administration (NASA) Ames Research Center (ARC) has developed a 

decision support tool—Spot And Runway Departure Advisor (SARDA)—to help air traffic controllers and airline 

operators optimize airport surface operations. Research has shown that SARDA improves airport operational 

performance in terms of throughput and efficiency
3, 13

. However, the absence of predictability metrics makes it 

difficult to measure the potential benefit to predictability. 

In this paper, we propose to bridge the gap in the literature by developing methods for measuring predictability. 

Using NASA’s airport surface optimization project as a test bed, we investigate how airport surface traffic 

management strategies can be used to deliver different levels of predictability through econometric analysis of 

operational and behavioral data. By adding predictability into performance consideration, the research would aid 
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traffic management decision making in a more comprehensive way. In the long term, this capability would allow us 

to improve the design of air traffic management decision support tools and technologies.   

The remainder of the paper is as organized as follows. In section II, the human-in-the-loop simulation, which 

serves as the source of data, is described. More details about the simulation can be found in Ref. 13. In the same 

section, the controller’s perception of predictability within the context of the study is discussed. In section III, taxi-

out time predictability from flight operator’s perspective is discussed. In section IV, from a traffic management 

perspective, predictability performance when SARDA is used to provide decision support is compared to that when 

SARDA is off. Finally, the paper concludes in section V.    

II. Controller Perceived Predictability 

NASA developed SARDA to provide controllers with timing advisories from the ramp area, along the taxiway 

onto the departure runway for departure aircraft
3, 14, 15, 16

. The objectives of SARDA are to alleviate traffic 

congestion on the airport surface and reduce fuel burn. In May 2012, NASA conducted a human-in-the-loop 

simulation evaluation of SARDA over 3 weeks
13

. The experiment was conducted for surface operations on the east 

side of Dallas-Fort Worth Airport (DFW) with two levels of traffic density: medium level with 40 departure aircraft 

in 50 minutes and high level with 50 departures in 50 minutes. To compare the difference in operational 

performance with and without SARDA, the team ran two sets of simulation runs each week: 8 advisory runs with 

SARDA on and 8 baseline runs with SARDA off, with half of the runs for each traffic density. In the advisory runs, 

controllers were asked to follow SARDA’s advisories. 

A total of 6 retired DFW tower controllers participated in the simulation. Surveys were designed to assess 

controller’s perception of improvement due to SARDA, with many improvements being indirect measures of 

predictability. For instance, unexpected surges in workload can be linked to decreased predictability. Two types of 

surveys were presented to controllers: post-run surveys, which were given to the controllers at the end of each run; 

post-study surveys, which were given to the controllers at the end of each simulation week. The survey questions of 

both are presented in the Appendix. 

A. Post-run Questionnaire  

The 3 post-run survey questions were designed to assess controller perception of workload stability in the run; 

when there are less unexpected surges, the workload is more stable and hence predictable. The survey questions also 

assessed the extra attention required for managing flight with Traffic Management Initiative (TMI) restrictions 

compared to non-TMI flights. In the simulation, controllers were asked to take off TMI flights within a ±1-minute 

window of the TMI time. Therefore, the TMI flight take-off times should be more predictable compared to the 

schedule take-off times. However, this increased predictability could come at the expense of extra attention from the 

controller, and we investigate how much more attention is paid by controllers to control TMI flights compared to 

non-TMI flights. The survey results are separated into two sets: responses for baseline runs and responses for 

advisory runs. Wilcoxon Matched-pair Signed-ranks Test is selected to assess whether or not there is significant 

difference between the mean responses in the two sets, where the responses are paired with traffic scenario and 

controller. The null hypothesis assumes there were no differences between the mean responses of the two sets. The 

test results are summarized in Table 1. 

Table 1. Post-run survey results, with significance level as 0.05 

Questions Ground controller Local controller 

1. Unexpected surges in workload No difference significant difference 

2. Frequency in delaying non-TMI flights to make sure 

that TMI flights could make their windows 
No difference No difference 

3. Extra attention required for managing TMI flights Significant difference Significant difference 

 

The results indicate that under advisory there were fewer unexpected surges in workload for Local Controllers 

(responsible for the runways including take-offs, landings and crossings) but not for Ground Controllers (responsible 

for taxiway movements). Advisory did not affect prioritizing the taxi-out sequence of aircraft at the significance 

level. However, SARDA reduced attention required for managing TMI flights at both positions.  

B. Post-study Questionnaire 

In the post-study questionnaire, controllers were asked to assess predictability-related impacts of SARDA on 

handling hypothetical off-nominal events, avoiding queue spillovers and providing accurate information to pilots. 

Two features of the impacts were surveyed. First, controllers were asked to assess the degree of impact of SARDA 
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on the event. Then they were asked to assess the importance of the potential improvement in handling that event. 

The impact of SARDA could be good or bad, but the importance of the impact is assessed assuming improvement. 

The survey results are summarized and shown in a 2-dimensional plot in Fig. 1, where both the average degree 

and the average importance of each impact are assessed. The degree of the impact is assessed using a scale of 1 to 

10, where 1 means much worse with SARDA and 10 means much better with SARDA. If the average grade is above 

5.5, then it means the performance is improved with SARDA. With all the points located above the horizontal axis, 

it indicates that SARDA has potential in improving the predictability-related performance. Further, controllers 

would appreciate the taxi advisories the most when there is change in runway configuration or departure routes. 

These two potential improvements are also considered the most important by controllers. Compared to these, 

reducing confusion about call signs and guide in runway crossing are also stated to be important, but SARDA does 

not improve these performances in a substantial way. 

 
Figure 1. Post-study survey results 

III. Predictability from Flight Operator’s Perspective 

Simulation data from 48 runs are categorized into 4 cases based on the traffic density and advisory condition: 

Medium traffic with baseline, medium traffic with advisory, high traffic with baseline and high traffic with advisory. 

Each case was run 6 times with SARDA and 6 times in baseline (no SARDA). Based on these data, predictability 

from the flight operator perspective is studied in two ways. In Section A, we compare the predictability performance 

with and without advisories by investigating unpredictability in total taxi-out time, from scheduled pushback time to 

actual wheels-off time. In Section B, we analyze predictability in taxi-out time after pushback, i.e. from actual 

pushback to actual wheels-off time, using linear regression analysis. 

A. Unpredictability in Total Taxi-out Time 

 

1. Unpredictability Metric 

Higher predictability in taxi-out time is equivalent to better prediction in the wheels-off time, which will benefit 

the operations both on the airfield and in the downstream of the network. In the vast majority of existing literature, 

predictability is defined by measuring the variation in the system experienced by the users
17, 18

. Less variability in 

taxi-out time means higher predictability in operations. However, accuracy in information alone might not provide a 

full picture of predictability.  

Assume flights A and B are taxiing out at an airport. Flight A is pushing back from the gate and its wheels-off 

time is estimated with 1-minute standard deviation. Flight B is entering the queue area and its wheels-off time is also 

estimated with 1-minute standard deviation. Following the definition in the literature, the level of predictability in 

taxi-out time for the two flights would be considered similar. However, the error information is more helpful to 

flight A since the information is provided at an earlier stage and pilots have more time to adjust operations to the 

error in estimation. On the contrary, pilots of Flight B might have started the second engine to prepare for departure 

before entering the queue area. The information provided at the queue entry time is then less useful for pilots of 

flight B because of the late notification. Cases like this motivate the consideration of timeliness of information in the 

predictability evaluation.  

When taxiing out, pilots want to know the wheels-off time in advance so that they can start the second engine 

optimally and get ready for takeoff. Generally, uncertainty in wheels-off time estimation decreases with time in the 

taxi-out process. Timely information permits more time of operation adaptation but could be less accurate. Late 

 Return to the gate
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notification is more accurate but leaves operators less ability to plan the operations. Therefore, a comprehensive 

discussion about predictability must consider both notions: accuracy and timeliness. In other words, information is 

most unpredictable if it is inaccurate and not timely. Following this, unpredictability is formulated as: 

 

    ∫        
  
  

            (1) 

 

where,    is the scheduled pushback time;    is the actual wheels-off time;      is standard deviation of the 

remaining taxi-out time at time  . In principle, variance in the remaining taxi-out time could be calculated at any 

time. However, it is more meaningful to discuss about the uncertainty at the critical stages. In this analysis, variance 

is calculated at 5 discrete stages during the taxi-out process: scheduled pushback, actual pushback, taxiway entry, 

queue entry and runway entry. With this, unpredictability could be further expressed as: 

 

    ∑    ̅     ̅       
   
              (2) 

 

where,   is the index for the stage, 1 for scheduled pushback, 2 for actual pushback, 3 for taxiway entry, 4 for queue 

entry, 5 for runway entry and 6 for actual wheels-off time. For each scenario,   ̅ is the average time when stage   
occurs, across all the aircraft.       is the standard deviation of the remaining taxi-out time at stage   for all the 

aircraft too. Unpredictability based on this formula reflects the level of lack of predictability for each scenario 

overall rather than for individual flight. 

 

2. Results on Unpredictability Comparison between Baseline and Advisory  

Unpredictability is measured for all the 4 scenarios and the estimation results are shown in Fig. 2. We take the 

plot for the scenario with high traffic and advisory as an example to explain the results. In the plot, horizontal axis 

represents average time that has passed after scheduled pushback. Standard deviation in total taxi-out time at 

scheduled pushback,    , is about 5 min. Average gate-holding, i.e., the average time difference between 

scheduled pushback and actual pushback, is 4.4 min. When aircraft actually pushed back from the gate,    , 

standard deviation drops to about 2.3 min which is less than half of before. When the aircraft enters the queue area, 

   , standard deviation in the remaining taxi-out time is around 1 min. Average time that aircraft spend in the 

queue area is 3.3 min. Then aircraft taxi to the runway and take off, and the total taxi out time is 14.8 min on 

average. For this scenario, unpredictability is 39.0 min
2
 which is the area below the blue step plot.  

 
Figure 2. Unpredictability in total taxi-out time and its components (note that the y axis scales are different 

between high traffic and medium traffic) 
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At the same traffic density, the baseline scenario turns out to have much larger unpredictability, as shown in the 

plots on the right side. In total, taxi-out time in the baseline case is 1 minute more than that in the advisory case. 

However, the average time aircraft wait in the queue area is 7.4 min, more than double as it is in the advisory case. 

Pilots usually start the second engine when the aircraft is entering the queue area, and the engines provide the cabin 

power during the remaining taxi process. On the other hand, SARDA allows the aircraft to hold at the gate with the 

Auxiliary Power Unit (APU) providing cabin power when the aircraft is at the gate. A unit time of APU requires less 

fuel than a unit time of 2-engine on. Therefore, shifting delay from the queue area to the gate allows the aircraft to 

save fuel burn in the taxi-out process. Without advisories, variation in total taxi-out time is larger and does not 

reduce at the actual pushback because of absence of gate-holding. Moreover, uncertainty in taxi-out time is high 

until aircraft taxi into the runway where there is a big drop in the standard deviation. As a result, the area below the 

blue step plot is larger than that in the advisory case, which indicates less predictability. Similarly, in the medium 

traffic level total variance in the taxi-out time is lower with SARDA advisories and variance in taxi-out time is 

greatly reduced after actual pushback with the use of advisories.  

In summary, uncertainty in wheels-off time declines faster with advisories at both traffic levels. Owing to the 

gate-holding, significant part of uncertainty in the taxi-out time is absorbed at the gate before pushback in the 

advisory case, especially for the high traffic scenario. In the baseline runs, actual pushback time of aircraft is about 

the same as the scheduled pushback time. Therefore, no reduction in variance is observed between these two times. 

After the aircraft pushback from the gate, uncertainty in the remaining taxi-out time also decreases at a faster rate for 

the advisory runs. At the time when the aircraft enters the queue area, majority of the uncertainty has been absorbed 

in the advisory runs whereas large uncertainty still exists in the taxi-out time in the baseline runs. 

B. Regression analysis for Actual Taxi-out Time 

Between actual pushback and takeoff, pilots need to complete multiple checklists, including After-Start-

Checklist, Taxi-Checklist and Before-Takeoff-Checklist. Accurate predictions of taxi-out time will allow pilots to 

better plan the operations. Moreover, high predictability in takeoff time would enable pilots to start the second 

engine more efficiently. Considering this, linear regression analysis is performed to capture variables that may 

explain the variance in actual taxi-out time. To make the regression model predictive, only variables with values 

known at the time of pushback are employed in the regression analysis. For a given aircraft, taxi trajectory is well 

defined once the departure gate and the runway are given. This allows us to have a good estimate about taxi distance 

in each area on the airfield. In addition, we could easily count number of aircraft in each area before pushback. 

 
Figure 3. Runway Configuration Map 

 

As shown in Fig. 3, for each departure aircraft, its taxi-out distance consists of four parts: ramp distance, taxiway 

distance, distance in the queue area and runway distance before wheels-off. For numbers of aircraft, we count 

numbers of aircraft at that time in the ramp, on the departure taxiway, in the queue area and in the arrival area. 

Arrival area is defined as the airfield below the departure runway in the map. Aircraft count in the arrival area is 

then all the arrival aircraft that have landed but not yet crossed the departure runway. The distance and count 

variables are selected as the independent variables in the regression model. We complete regression analysis for both 

traffic level scenarios with and without advisory. Here, we present estimation results for high traffic level scenarios 

only. Results for the medium traffic scenarios are similar, but with less difference between advisory and baseline 

cases.  

Departure runway, 17 R

Arrival runway, 17 C
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We first estimated full models with all the distance and counts variables for both advisory and baseline cases. 

We then removed the terms that are not significant at the 0.05 level in the full models and use the remaining as the 

final models for further study. Estimation results from the final linear taxi-out time regression models for advisory 

and baseline runs are shown in Table 2.  

Table 2. Estimation results on taxi-out time regression models, advisory and baseline 

 Advisory Baseline 

 
Estimate P Value Estimate P Value 

Intercept 124.66 <0.0001 173.22 0.5235 

Number of aircraft in the ramp 3.58 0.0195 26.12 <0.0001 

Number of aircraft on the taxiway 5.77 <0.0001 29.67 <0.0001 

Number of aircraft in the queue area 5.82 0.0008 12.56 0.0068 

Number of aircraft in the arrival area 9.83 <0.0001 − − 

Ramp distance 0.38 <0.0001 0.95 <0.0001 

Taxiway distance 0.15 <0.0001 0.05 <0.0001 

Queue area distance 0.13 <0.0001 − − 

Number of observation 541 534 

Residual standard error 56.7 252.6 

Adjusted R
2
  0.83 0.41 

 

When there are more aircraft along the taxi-out path, it is expected that taxi-out time will be longer. However, 

the incremental effect of each aircraft in the taxi-out path is larger in the baseline model, as shown by the larger 

coefficients. This shows SARDA mitigates the influence of other airfield traffic on the taxi-out time of a given 

aircraft. Number of aircraft in the arrival area is only significant in the advisory model. Therefore, marginal effect of 

arrivals is significant in advisory, but not in baseline. Coefficients for distances are positive for both models, with 

marginal effect of ramp distance the greatest. Without advisory, the queue area is congested with departure aircraft. 

The taxi time in queue area mainly depends on number of planes that will take off before a given aircraft rather than 

the queue distance of this aircraft. In general, coefficients for variables are larger in the baseline model. It reveals 

that there are fewer disturbances to a given aircraft from other operational parameters in the advisory model. With a 

larger adjusted R
2
, advisory makes taxi-out time more explainable with the variables in the model. Standard 

deviation of the future response is expected to be much smaller with advisory, since residual standard error in the 

advisory model is only one fifth of that in the baseline model. If the regression models are used to predict the 

wheels-off time, the prediction in the advisory model would be much more accurate.  

IV. Predictability from Traffic Management Perspective 

Depending on the airport in consideration, departure runways usually experience queues and in some cases, 

specific runway queuing areas are present on the airport surface. With the assumption that pilots can identify their 

sequence of queue entry, if the takeoff sequence is well matched to the queue entry sequence, then the pilots can 

better estimate the takeoff sequence and time. Thus, from a traffic management perspective, it is important to ensure 

the sequence predictability in the queue area. 

In normal runway operations at DFW, the departure queue has three lanes. This provides opportunities to the 

local controller to deviate from the First-In-First-Out (FIFO) structure of the queuing area for runway utilization 

maximization. Thus, in the baseline case, departure queue might not be served following FIFO. 

The SARDA algorithms use multiple objectives (throughput and delay) to identify the takeoff sequence, which is 

periodically updated to address uncertainty in aircraft movement
3, 11

. However, there is no attempt to maintain the 

FIFO nature of the runway queue. The advisory would diminish the sequence predictability if the sequence of 

departure takeoffs provided by SARDA deviated from the potential FIFO sequence significantly. To assess the 

impact of SARDA on the performance, we compare the predictability performance in the advisory runs to that in the 

baseline runs. 

Sequence predictability in each run is defined using the Spearman’s coefficient
19

, which measures the sequence 

correlation between the queue entry times and the aircraft wheels-off times. Mathematically, the metric can be 

written as: 

     
 ∑ (  

     
   

    )
 

 
   

       
            (3) 
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where, N is number of aircraft in the run;   
     

 is the rank of aircraft i in the queue entry time among all the 

aircraft;   
     is the rank of aircraft i in the wheels-off time among all the aircraft. The value of the metric will be 1 

if the rankings are in perfect agreement which indicates perfect FIFO performance and 0 if there is no relationship 

between the two rankings.   

Using this formula, predictability is calculated for both the advisory and baseline runs at the two traffic levels: 

medium and high. The results are summarized in Table 3. The simulation runs are paired by controllers and the 

traffic scenario. The rank correlation is almost 1 in the advisory runs at both traffic levels. On average, rank 

correlation is more with advisories, which indicates higher sequence predictability. The improvement in 

predictability is more obvious at high traffic level. Taking a closer look at the detailed data, we find that one reason 

for a lower rank correlation in the baseline runs is the TMI flights. Without advisories, controllers tend to take out 

TMI flights earlier and have them wait in the queue well in advance to make sure the TMI flights will make the 

assigned time window. This strategy reduces the rank correlation between queue entry time and wheels-off time, and 

probably consumes more fuel. 

Another reason for the better performance of the advisory is the reduced number of aircraft in the queue area 

with the use of SARDA. In the experiment, it was observed that the number of aircraft in the departure queue never 

exceeded 6 in the advisory case, whereas in the baseline case queue sizes of up to 12 were observed. Smaller overall 

number of aircraft in the runway queue potentially leads to less possibility of deviation from FIFO, and hence better 

sequence predictability in the advisory case. 

Table 3. Results of Sequence Predictability in the Queue Area 

Medium Traffic Level High Traffic Level 

Runs Advisory Baseline Runs Advisory Baseline 

1 0.997 0.984 1 0.996 0.974 

2 0.997 0.992 2 0.997 0.986 

3 0.997 0.988 3 0.998 0.926 

4 0.995 0.982 4 0.999 0.938 

5 0.993 0.991 5 0.996 0.983 

6 0.993 0.985 6 0.998 0.978 

7 0.998 0.993 7 0.999 0.936 

8 0.995 0.978 8 0.997 0.967 

9 0.998 0.992 9 0.998 0.985 

10 0.996 0.989 10 0.997 0.980 

11 0.997 0.984 11 0.999 0.929 

12 0.998 0.984 12 0.999 0.950 

Average 0.996 0.987 Average 0.998 0.961 

Test Statistics (t-test) 1.892 Test Statistics (t-test) 1.633 

Degree of Freedom 14 Degree of Freedom 11 

 

To test whether the improvement in predictability performance is statistically significant, we conducted a 1-

tailed hypothesis test. The null hypothesis was that sequence predictability is the same with and without advisories, 

and the alternative hypothesis was that sequence predictability was higher in the advisory runs. Assuming unequal 

variances, the testing results reject the null hypothesis at a significance level 0.1 at both traffic levels. Therefore, 

improvement in sequence predictability in the queue area by SARDA is statistically significant.  

Sequence predictability may also be assessed at a strategic level. Compared to the queue entry time, the 

scheduled pushback time of aircraft is known in advance. Assuming no congestion at the airport, we could estimate 

the scheduled wheels-off time for aircraft, which is calculated as the scheduled pushback time plus unimpeded taxi-

out time. If the rank correlation between scheduled wheels-off time and real wheels-off time is strong enough, then 

the operations are predictable in terms of First-Scheduled-First-Served (FSFS). Here, we use scheduled wheels-off 

time instead of scheduled pushback time because the unimpeded taxi time for aircraft from different terminals can 

be very different. Since collaborative gate-holding is considered in the algorithm of SARDA, it is uncertain how the 

advisory affects the FSFS performance. To assess the impact of SARDA on the performance, the sequence 

predictability between the two wheels-off times is estimated following the same method as before. The results are 

summarized in Table 4. 
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Table 4. Results of Sequence Predictability between Scheduled and Real Wheels-off Time 

Medium Traffic Level High Traffic Level 

Runs Advisory Baseline Runs Advisory Baseline 

1 0.961 0.976 1 0.951 0.965 

2 0.954 0.972 2 0.957 0.934 

3 0.975 0.962 3 0.933 0.924 

4 0.971 0.957 4 0.940 0.927 

5 0.956 0.984 5 0.952 0.966 

6 0.952 0.966 6 0.956 0.959 

7 0.978 0.989 7 0.935 0.929 

8 0.975 0.965 8 0.940 0.943 

9 0.959 0.989 9 0.954 0.944 

10 0.952 0.981 10 0.960 0.928 

11 0.973 0.967 11 0.925 0.920 

12 0.947 0.936 12 0.938 0.914 

Average 0.963 0.970 Average 0.945 0.938 

Test Statistics (t-test) -0.423 Test Statistics (t-test) 0.365 

Degree of Freedom 22 Degree of Freedom 20 

 

Comparing the predictability of each run, there is no obvious trend in the difference in the performance. A 2-

tailed hypothesis testing is conducted to test whether the predictability level is different for the two types of runs or 

not. With small test statistics, we accept the null hypothesis that the sequence predictability is the same with and 

without SARDA. In other words, there is no evidence to suggest that SARDA performs worse than baseline in 

maintaining FSFS operations.  

V. Conclusions 

In this paper, we define and measure predictability in airport surface operations from multiple perspectives based 

on NASA’s experimental data from testing the SARDA, an airport surface management tool. Through a survey 

study, controllers report that SARDA reduces unexpected workload surges and facilitates handling of TMI flights. 

The survey results also show that the tool could potentially yield other benefits in terms of ability to handle off-

nominal situations, avoid queue spillovers, etc. Controllers also indicated that the SARDA would be very beneficial 

when there is change in runway configuration or departure routes.  

From operator’s perspective, we study predictability in total taxi-out time, from scheduled pushback time to 

wheels-off time, considering two competing notions: timeliness of information and accuracy of information. 

Specifically, we define the counterpart, unpredictability, as the integrated standard deviation of the remaining taxi-

out time over time from schedule pushback to actual wheels-off. The results show that SARDA reduces variability 

in total taxi-out time and eliminates uncertainty in taxi-out time sooner. This enables us to have a more accurate 

estimate of wheels-off time sooner and thus provides higher predictability in operations. Next, we conduct linear 

regression analysis of taxi-out time, from actual pushback to wheels-off. Taxi distances and numbers of aircraft in 

each area, such as ramp area and queue area, are selected to be the only explanatory variables because their values 

could be easily estimated at the pushback time and not depend on the following taxi-out process. The regression 

results indicate SARDA relieves traffic congestion on the airfield with less marginal effects of the variables. 

Moreover, aircraft wheels-off time could be predicted more accurately with SARDA giving a larger adjusted R
2
 and 

a smaller residual standard error in the advisory model. Higher predictability from SARDA would allow pilots to 

better sequence their operations and start the second engine more efficiently.  

Finally, we examine predictability in traffic management. Using sequence predictability, we assess the impact of 

SARDA on First-In-First-Out performance in the queue area and First-Scheduled-First-Served performance. The 

results show that SARDA improves the correlation between queue entry time and the real wheels-off time, which 

potentially allows pilots to make better estimates in wheels-off time. At a strategic level, although gate-holding is 

considered in the advisory runs there is no evidence to indicate that SARDA deteriorates FSFS performance. 

Existing work on measuring predictability focuses on the variation in air traffic management system as 

experienced by the users. Recognizing the potential benefit from timeliness of information besides accuracy of 

information, predictability from flight operators’ perspective is measured considering both aspects. Here, we assume 

predictability at a given time to be the product of the timeliness and accuracy. Different flight operators could have 

different sensitivities on timeliness of information according to their operational characteristics. Therefore, an 
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interesting extension of this work is to customize the relationship between the two features in predictability 

definition. More broadly, the relative importance of predictability, as compared to other dimensions of performance 

such as delay and efficiency, needs to investigated, both in the airport surface domain and in other parts of the NAS. 

Appendix 

A. Post-run Survey Questions: 

Q1. Please rate how much you agree or disagree with the following statement: There were unexpected surges in 

workload. Please answer on a scale of 1 to 10 (1= Extremely disagree and 10 = Extremely agree) 

 

Q2. How often did you delay non-TMI flights in order to make sure that TMI flights could depart within their 

windows? Please answer on a scale of 1 to 10 (1= Never and 10 = Always) 

 

Q3. How much attention was required for managing TMI flights as compared to non-TMI flights? Please answer 

on a scale of 1 to 10 (1 = much less attention and 10 = much more attention) 

B. Post-study Survey Questions: 

Under SARDA, there will normally be fewer aircraft on the taxiways and the queue area. Please answer the 

following questions:  

Q1. Will having fewer aircraft on the taxiways and queue area make it easier to handle aircraft in these locations 

that must return to the gate (due to a medical emergency or mechanical problem)? Please use a scale of 1 to 10, 

(1 = Much harder, and 10 = Much easier) 

    If it is easier to handle aircraft in these locations that must return to the gate, is this an important 

advantage? Please use a scale of 1 to 10, (1 = Not at all important, and 10 = very important) 

 

Q2. Will having fewer aircraft on the taxiways and queue area lead to less confusion about the call sign of each 

aircraft? Please use a scale of 1 to 10, (1 = Much more confusion, and 10 = Much less confusion)   

    If there is less confusion about the call sign of each aircraft, is this an important advantage? Please use a 

scale of 1 to 10, (1 = Not at all important, and 10 = very important) 

 

Q3. Will having fewer aircraft on the taxiways and queue area make it easier to advise an aircraft of its sequence? 

Please use a scale of 1 to 10, (1 = Much harder, and 10 = Much easier) 

    If it is easier to advise an aircraft of its sequence, is this an important advantage? Please use a scale of 1 to 

10, (1 = Not at all important, and 10 = very important)\ 

 

Q4. Will having fewer aircraft on the taxiways and queue area make it easier to handle airport configuration 

changes? Please use a scale of 1 to 10, (1 = Much harder, and 10 = Much easier) 

    If it is easier to handle airport configuration changes, is this an important advantage? Please use a scale of 

1 to 10, (1 = Not at all important, and 10 = very important) 

 

Q5. Will having fewer aircraft on the taxiways and queue area make it easier to adapt to changes in departure 

routes necessitated by convective weather? Please use a scale of 1 to 10, (1 = Much harder, and 10 = Much 

easier) 

    If it is easier to adapt to changes in departure routes necessitated by convective weather, is this an 

important advantage? Please use a scale of 1 to 10, (1 = Not at all important, and 10 = very important) 

 

Q6. Will having fewer aircraft on the taxiways and queue area lead to less risk of the queue interfering with 

taxiways? Please use a scale of 1 to 10, (1 = Much more risk, and 10 = Much less risk). 

    If there is less risk of the queue interfering with taxiways, is this an important advantage? Please use a 

scale of 1 to 10, (1 = Not at all important, and 10 = very important). 

 

Q7. Will having fewer aircraft on the taxiways and queue area make it easier to manage runway crossings of 

arriving aircraft? Please use a scale of 1 to 10, (1 = Much harder, and 10 = Much easier) 

    If it is easier to manage runway crossings of arriving aircraft, is this an important advantage? Please use a 

scale of 1 to 10, (1 = Not at all important, and 10 = very important) 
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